Antiferroelectric Shape Memory Ceramics
نویسندگان
چکیده
منابع مشابه
Antiferroelectric Shape Memory Ceramics
Antiferroelectrics (AFE) can exhibit a “shape memory function controllable by electric field”, with huge isotropic volumetric expansion (0.26%) associated with the AFE to Ferroelectric (FE) phase transformation. Small inverse electric field application can realize the original AFE phase. The response speed is quick (2.5 ms). In the Pb0.99Nb0.02[(Zr0.6Sn0.4)1-yTiy]0.98O3 (PNZST) system, the shap...
متن کاملTitle: Shape Memory and Superelastic Ceramics at Small Scales
Shape memory materials are a class of smart materials able to convert heat into mechanical strain (or strain into heat), by virtue of a martensitic phase transformation. Some brittle materials such as intermetallics and ceramics exhibit a martensitic transformation, but fail by cracking at low strains and after only several applied strain cycles. Here we show that such failure can be suppressed...
متن کاملShape memory and superelastic ceramics at small scales.
Shape memory materials are a class of smart materials able to convert heat into mechanical strain (or strain into heat) by virtue of a martensitic phase transformation. Some brittle materials such as intermetallics and ceramics exhibit a martensitic transformation but fail by cracking at low strains and after only a few applied strain cycles. Here we show that such failure can be suppressed in ...
متن کاملTHE ELECTRIC FIELD-INDUCED ANTIFERROELECTRIC TO FERROELECTRIC PHASE TRANSITION IN SOME (Pb,La) Zr0.55Ti0.4503 CERAMICS
Lanthanum substituted lead zirconate-titanate (PLZT) ceramics of composition 11.1/55/45 have been studied by measuring high electric field properties. Dc bias, dielectric and P-E hysteresis loop measurements have been employed to construct an E (electric field) versus T (temperature) phase diagram. At lower temperatures and small electric fields an antiferroelectric phase with tetragonal symmet...
متن کاملLarge Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics
Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we repo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Actuators
سال: 2016
ISSN: 2076-0825
DOI: 10.3390/act5020011